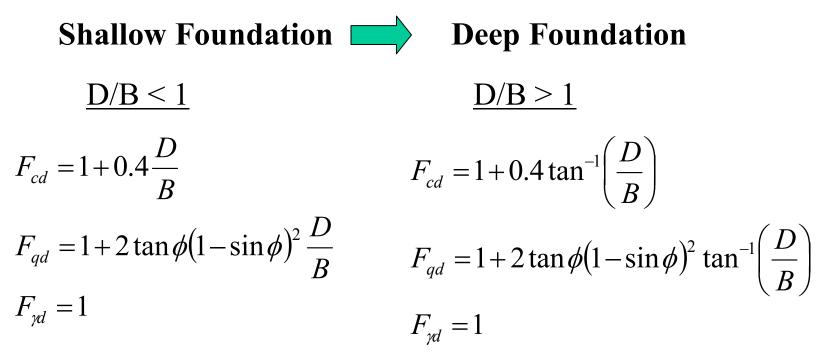
5. Deep Foundations(深基礎)

Applicability of depth factors for the shallow foundations is limited to a certain depth, because <u>bearing mechanism changes as</u> the embedment depth increases. *How??*



Hansen's depth factor for shallow foundation

2008/1/10

Stability Analyses in Geotech. Eng. by J. Takemura 1

5.1 Classification of deep foundation

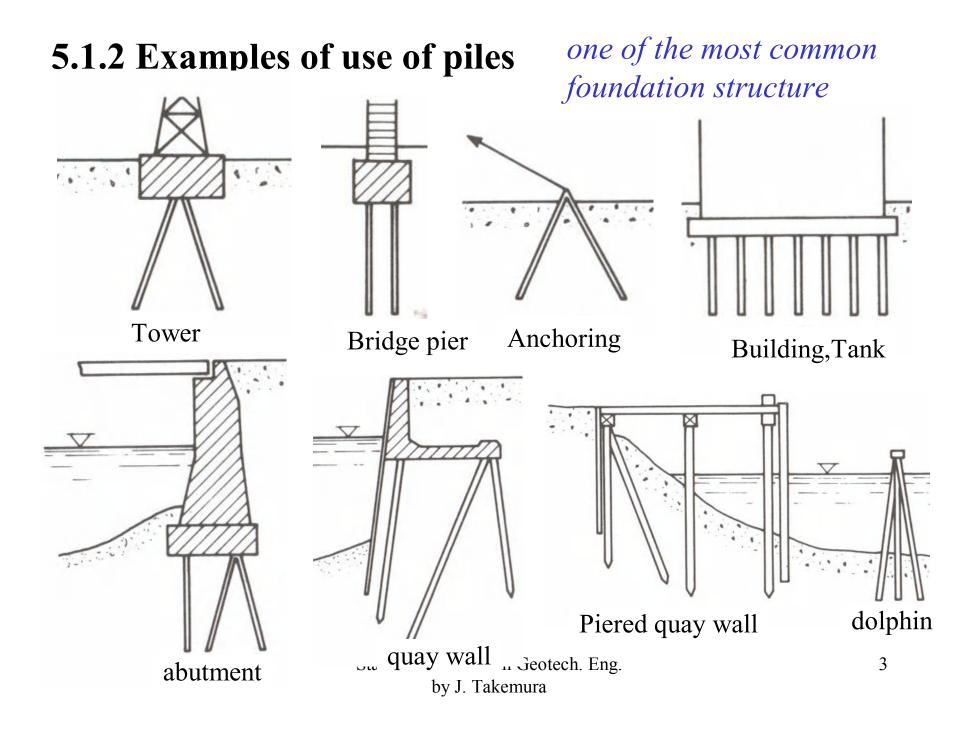
5.1.1 Classification of deep foundation

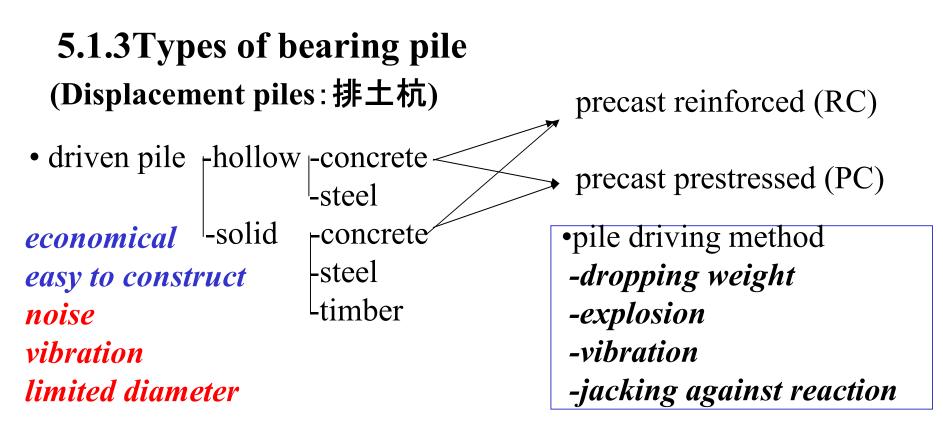
Pile foundation-displacement or non-displacement(杭基礎)-hollow or solid
-material (concrete, steel, timber)
-preformed or cast-in-place (bored pile, drilled pile)
-purposes (bearing pile, reinforcement, stabilization)
-conditions of pile (end bearing pile, friction pile,
lateral loaded, uplift, negative skin friction)

Caisson Foundation (ケーソン基礎)

Diaphragm wall foundation (連壁基礎)

2008/1/10





• driven cast-in-place a tube is driven -concrete (closed end tube filled with concrete) -steel - closed end tube filled with concrete - open end (casing method,retrievable tube was removed after filling concrete with reinforcement 2008/1/10 Stability Analyses in Geotech. Eng. by J. Takemura 4

5.1.3Types of bearing pile (Non-displacement piles:無排土杭) •cast-in-reinforced concrete pile(場所打ち杭) drilled pile all casing method bored pile earth drill method reverse circulation method

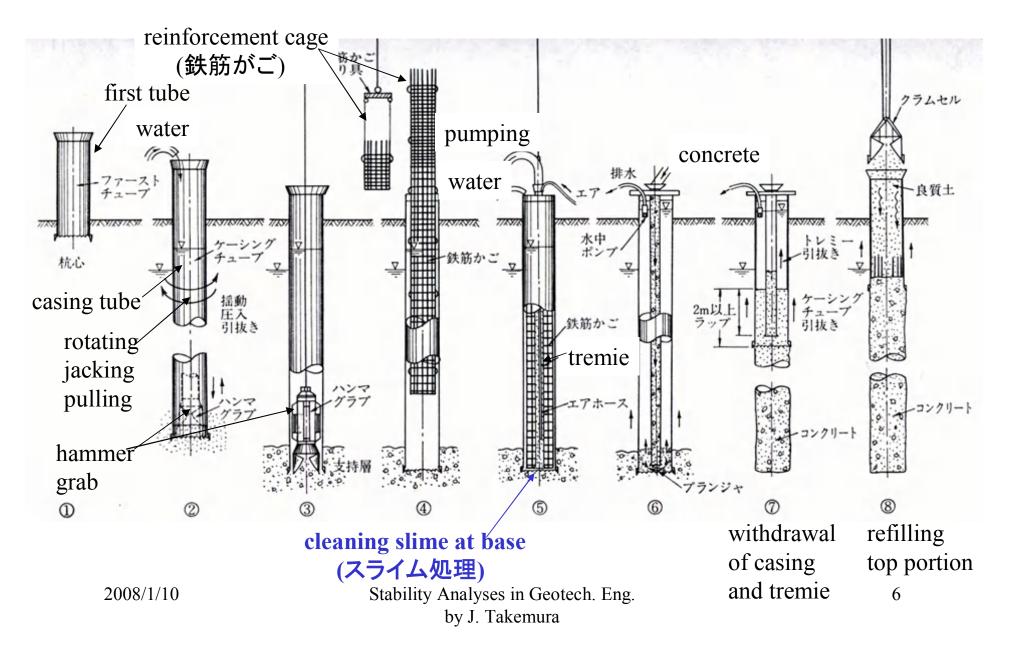
low noise low vibration large diameter and flexible cross section (enlarging base) relatively hard to construct

•Pre-boring pile installation

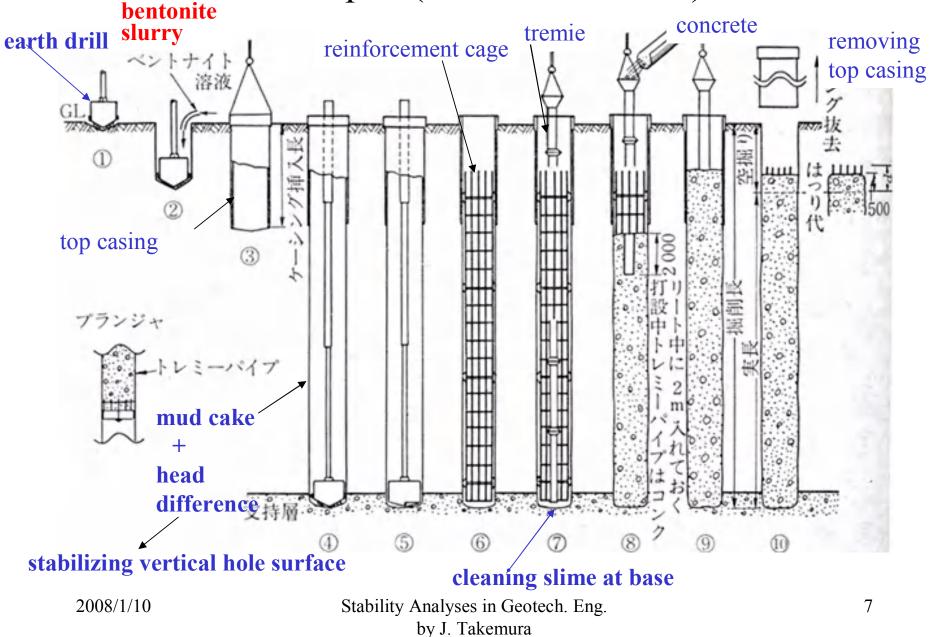
•Cement grout mixing with core material (Steel pile) Soil cement –hybrid steel pile

2008/1/10

Bored pile (all casing method)

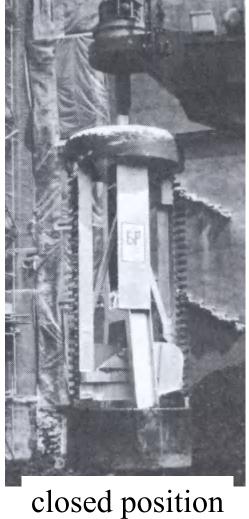


Bored pile (earth drill method)



enlargement of base diameter

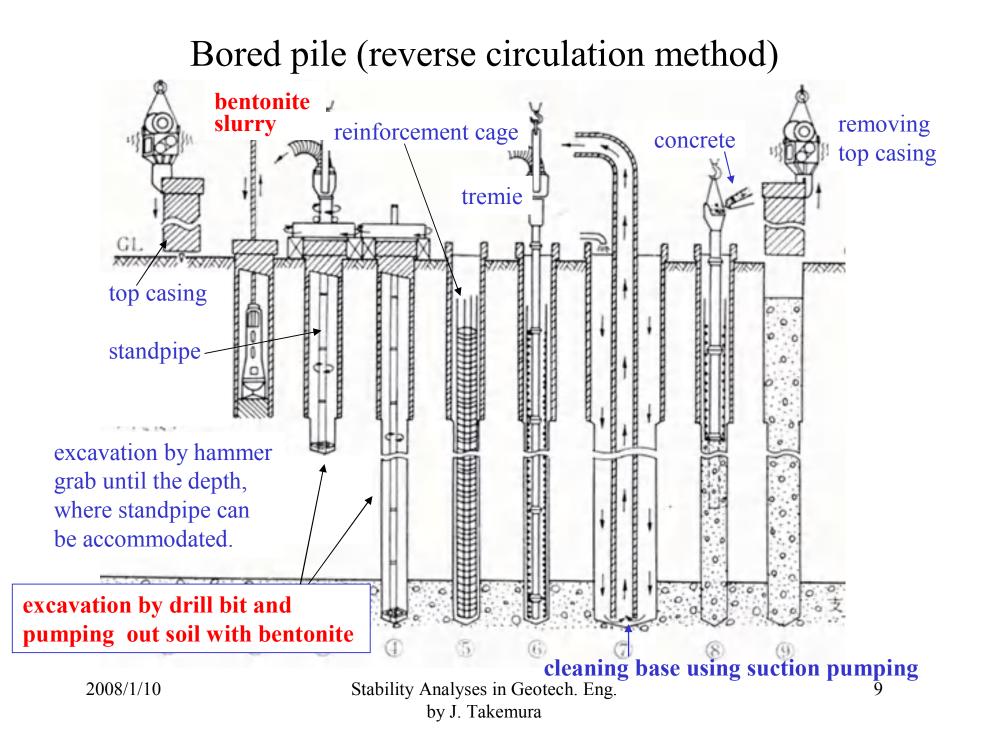
Under-reaming tool



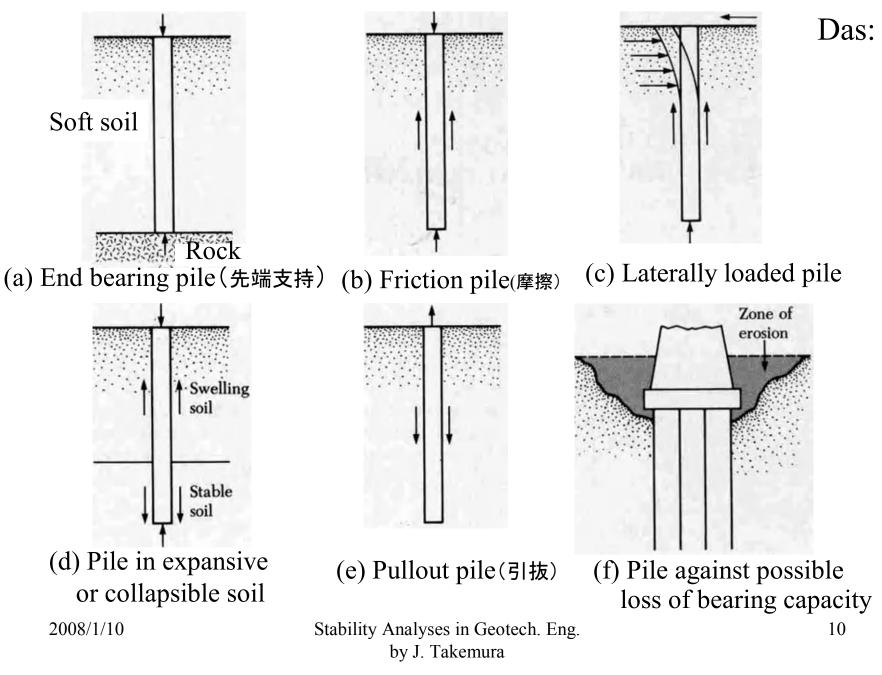


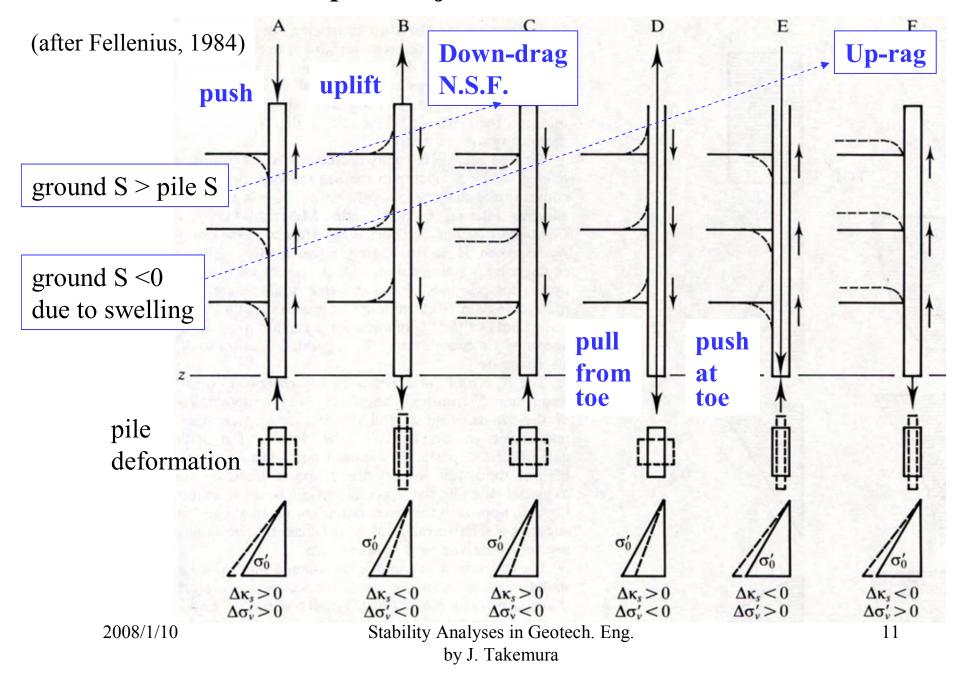
open position

2008/1/10

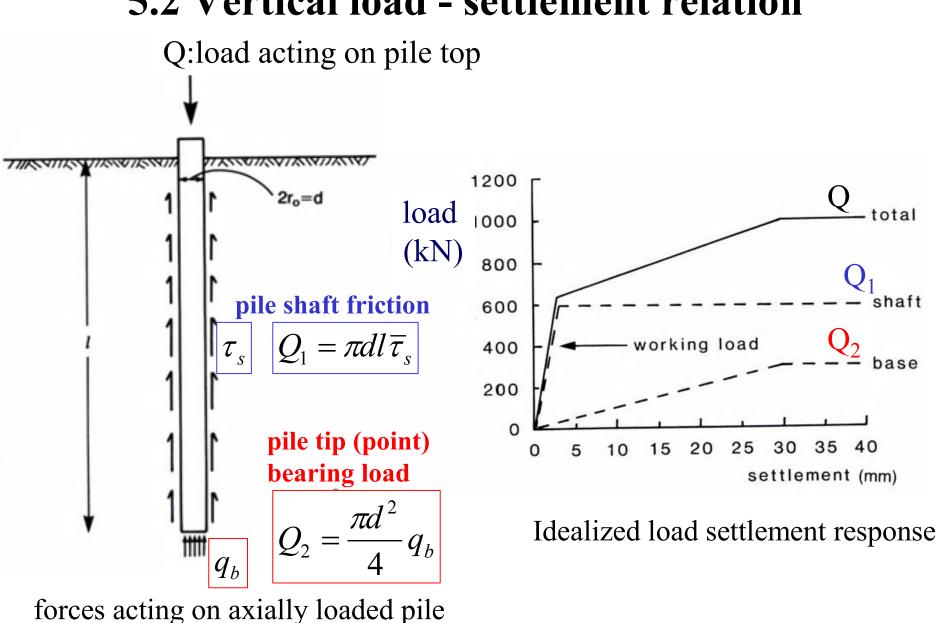


5.1.4 Types and loading conditions of pile foundations



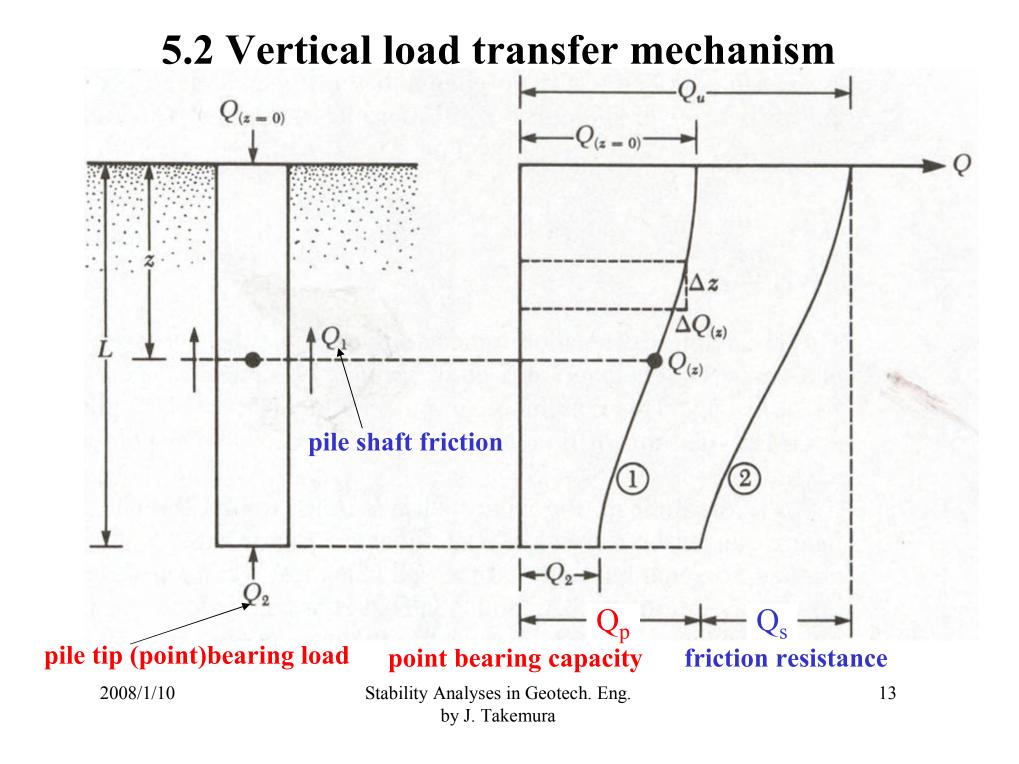


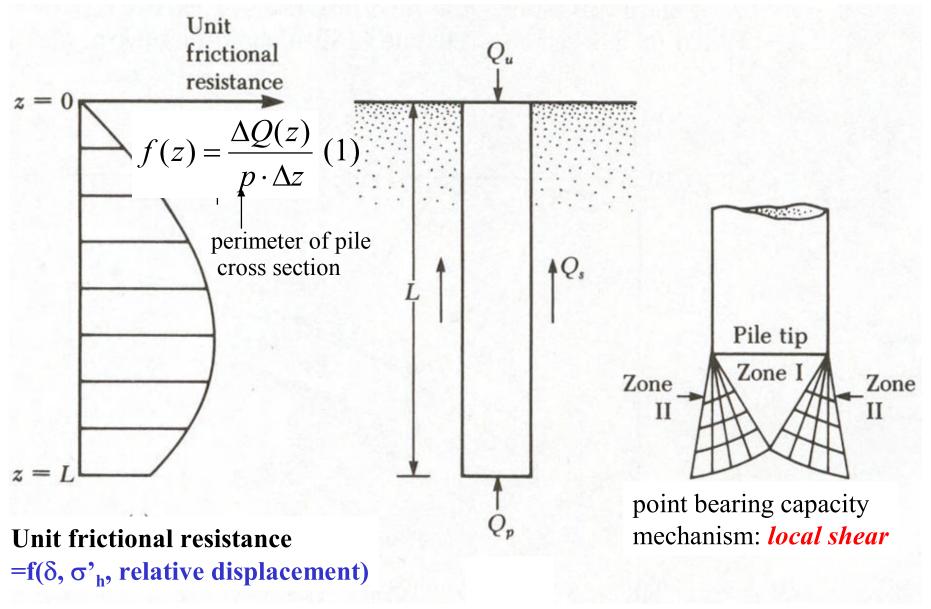
Behavior mode of a pile subjected to six different axial conditions



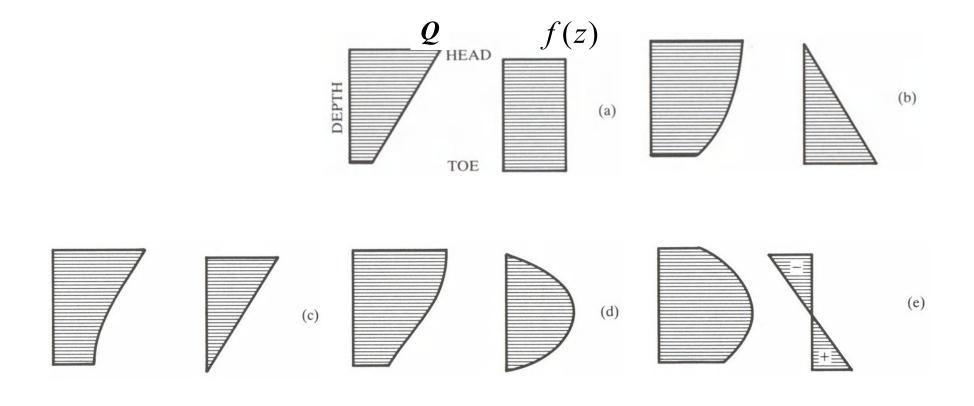
5.2 Vertical load - settlement relation

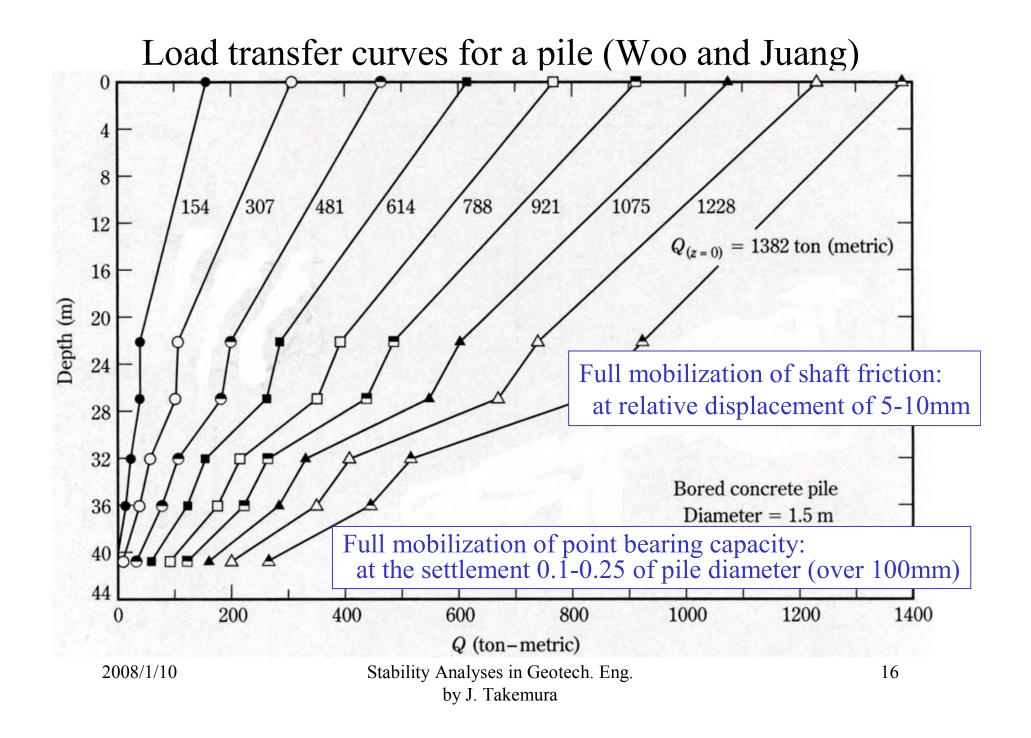
2008/1/10



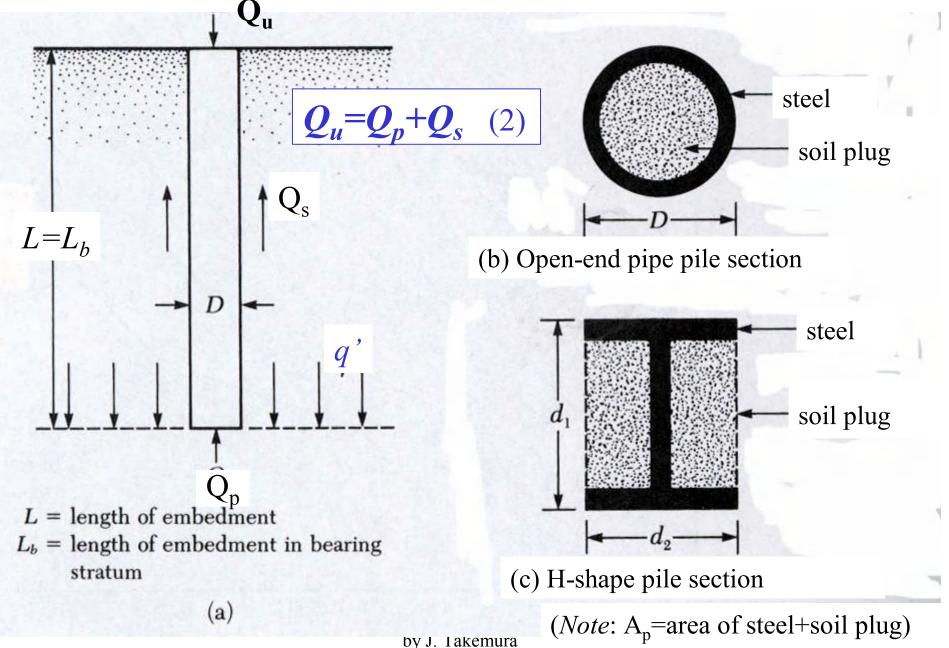


Load transfer functions for distributions of shaft resistance (Vesic,1970)





5.3 Estimation of pile capacity against vertical load



5.3.1 Point bearing capacity, Q_p

Bearing capacity equation similar to that of shallow foundation:

$$Q_p / A_p = q_p = cN_c^* + q'N_q^* + \gamma DN_{\gamma}^*$$
 (3)

 $N_{c}^{*}N_{q}^{*}, N_{\gamma}^{*}$: bearing capacity factors which include the shape and depth factors $D \ll L \implies \gamma D \ll \gamma L \equiv q'$ *Pile:circular or square shape*

(3) =>
$$Q_p = A_p (cN_c^* + q'N_q^*)$$
 (4)

Many method to evaluate the point bearing capacity, Meyerhof (LEM, N-value:Das text book p 585,586) Vesic (cavity expansion theory considering compressibility of soil Das text book p 587,589) Janbu (LEM:Das text book p 589,590)

2008/1/10

5.3.2 Friction resistance, Q_s

From the equation of unit friction resistance (eq.(1)),

$$Q_s = \sum p \Delta L f_{(z)} \quad (5)$$

 $f_{(z)} = \sigma'_h \tan \delta \qquad (6)$

δ: surface roughness, σ'_h : lateral stress

$$\sigma'_h = K \sigma'_v$$

 δ and σ'_h may be affected by several factors,

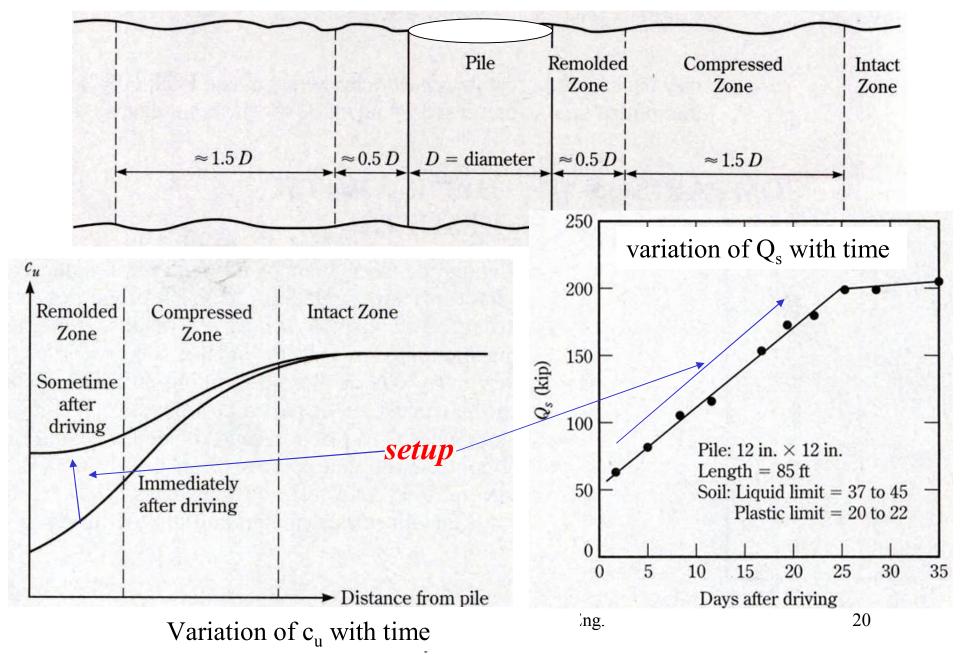
what is proper K?

pile type: pile installation method: the higher displacement, the higher σ'_h soil conditions: the higher density, the higher δ and σ'_h the larger OCR, the larger K_0 time: consolidation

many proposals both for sand and clay :see Das text book

2008/1/10

time effects



5.4 Other important evaluations for pile foundation

- 1. Settlement = settlement of pile tip + compression of pile
- 2. Negative skin friction: large settlement of surrounding ground due to consolidation => direction of relative displacement becomes negative and $\Delta Q_s < 0$
- 3. Pullout resistance:

$$T_{ug} = \underline{T_{un}} + W$$

net resistance: *adhesion or friction*

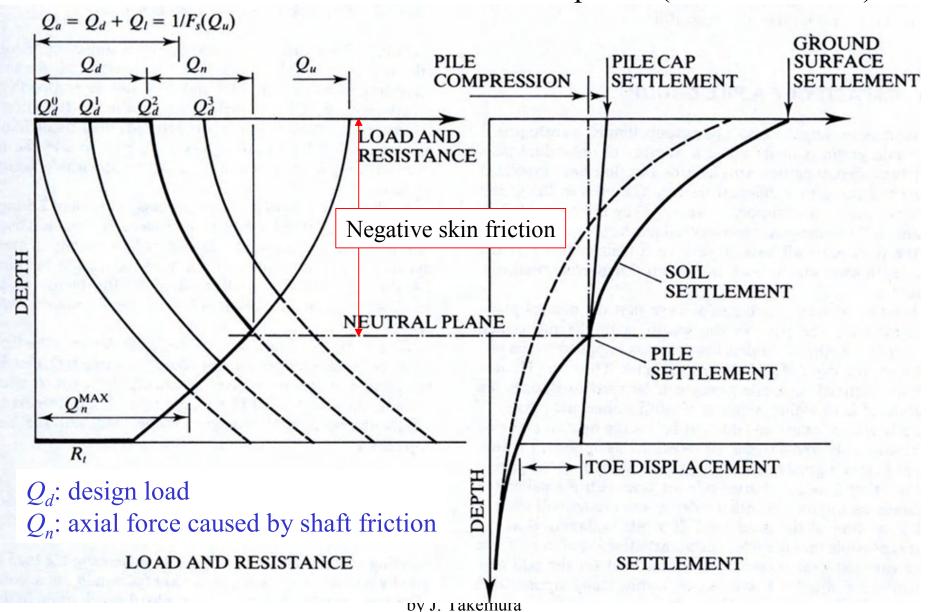
4. Lateral resistance: load -active pile

elastic solution for deflection plastic theory for ultimateload

(external load from superstructure by wind and earthquake)-passive pile (large lateral movement of the surrounding ground)

5. Pile group effect: interaction between piles => group efficiency η = (contribution of one pile in group pile) / (single pile)

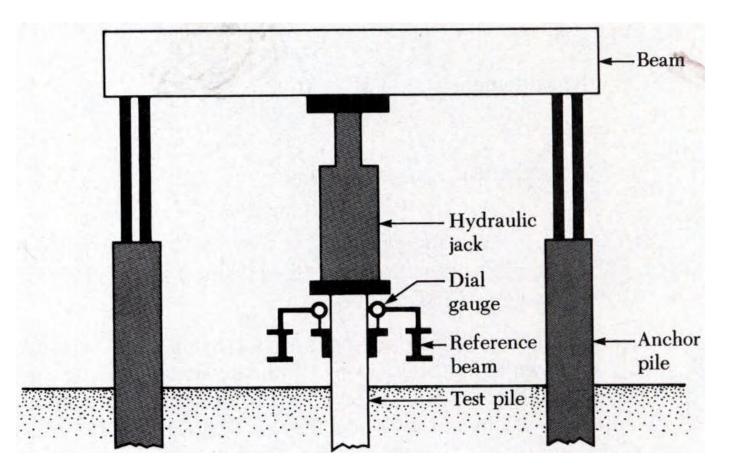
Diagram of load and resistance and of settlement showing dependence of settlement on the location of neutral plane. (After Fellenius)



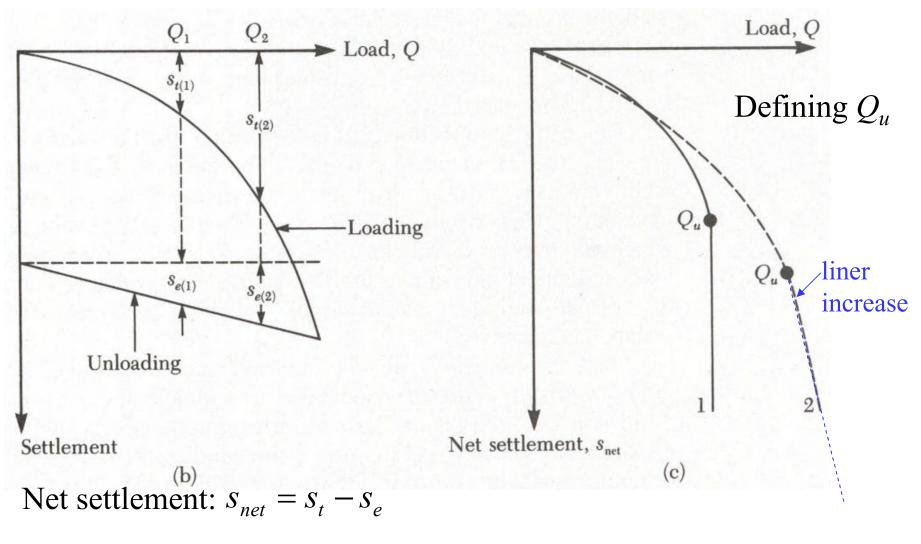
5.5 Confirmation of bearing capacity of pile:

Pile load tests:

Das text



Typical load settlement relation in pile loading test _{Das text}



2008/1/10

Stability Analyses in Geotech. Eng. by J. Takemura 24

Other pile loading tests

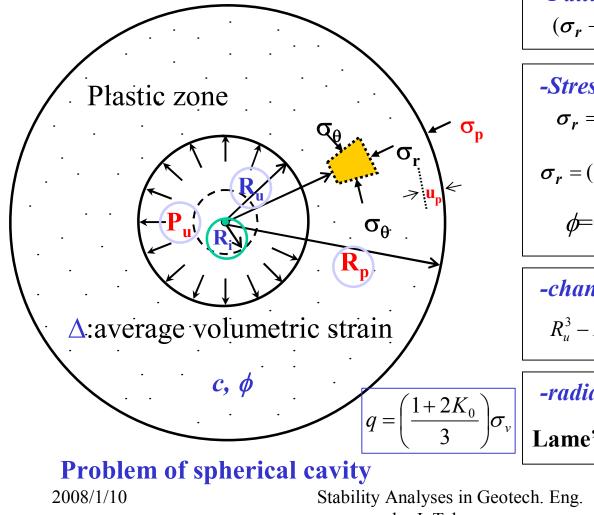
•Static test (conventional, Osterburg sampler)

•Stanamic test (using explosion)

•Dynamic test (impact force)

Expansion of Cavity in infinite soil by Vesic (1972)

Elastic zone: *E*, *v*



-Equilibrium(1) $\frac{\partial \sigma_r}{\partial r} + 2 \frac{\sigma_r - \sigma_{\theta}}{r} = 0$

-Failure criterion (2) $(\sigma_r - \sigma_\theta) = (\sigma_r + \sigma_\theta) \sin \phi + 2c \cos \phi$

-Stress Boundary Condition+(1)(2) $\sigma_r = P_u \text{ for } r = R_u$ $\sigma_r = (p_u + c \cot \phi) \left(\frac{R_u}{r}\right)^{\frac{4\sin \phi}{(1+\sin \phi)}} - c \cot \phi$ $\phi = 0 \implies \sigma_r = p_u - 4c \ln \frac{r}{R_u}$

-change of cavity volume=> $R_{u}^{3} - R_{i}^{3} = R_{p}^{3} - (R_{p} - u_{p})^{3} + (R_{p}^{3} - R_{u}^{3})\Delta$

$$P_{u} = \left(\frac{R_{p}}{R_{u}}\right)^{\frac{4\sin\phi'}{(1+\sin\phi')}} \frac{3(q+c\cot\phi)(1+\sin\phi')}{3-\sin\phi'} - c\cot\phi$$

$$\downarrow \rightarrow \sqrt[3]{1+\Delta} \approx 1, \quad (3-\sin\phi)/3\cos\phi \approx 1 \qquad (a<0.15 \text{ and } 0<\phi<45^{0})$$

$$P_{u} = cF_{c} + qF_{q}$$

$$F_{q} = \frac{3(1+\sin\phi')}{3-\sin\phi'} (I_{rr})^{\frac{4\sin\phi'}{3(1+\sin\phi')}}$$

$$I_{r} = \frac{E}{2(1+\nu)(c+q\tan\phi)} = \frac{G}{s}: \text{ Rigidity index}$$

$$I_{rr} = \frac{I_{r}}{1+I_{r}\Delta}: \text{ Reduced rigidity index}$$

$$\Phi = 0, (\Delta = 0)$$

$$P_u = cF_c + qF_q$$

$$F_q = 1$$

$$F_c = \frac{4}{3}(\ln I_r + 1)$$

$$P_u \equiv f(\phi, \Delta, I_r)$$

 ϕ, Δ , G are all stress dependent

2008/1/10